
 1

Abstract—This research evaluates product-line software

engineering of mobile applications. A native mobile application
benefits from performance and device integration, but at the cost
of multiple versions of the application for each mobile platform,
e.g., an Android and iPhone version. Engineering requirements
may dictate a native application but alternatives are available
which may allow a write-once-deploy-anywhere solution,
reducing development and maintenance costs and requiring a
smaller set of skills. This research shows HTML5 and the mobile
web may be a valid solution for most applications if the
application requirements do not rely on device optimization or
hardware features.

I. INTRODUCTION
The landscape for mobile devices has gone from feature

phones to smartphones, with smartphones providing more
CPU power and storage, allowing users to run applications of
their choosing. To meet the demand for smart phones, there
are several companies providing smartphone solutions, such as
Apple (iOS), Google (Android), Microsoft (Windows Mobile),
and others. Selecting a single platform to develop and release
mobile applications on is no longer a viable option if the goal
is to reach the most customers. See Fig. 1 for market share
breakdown by platform.

Platform Market Share (%)
Google 50.1%
Apple 30.2%
RIM 13.4%
Microsoft 3.9%
Symbian 1.5%
Fig. 1. Platform market share for February 2012 [1].

Each platform typically has its own software development
kit and language or languages supported. Each platform has
its own capabilities and tool sets. Developing a native
application to support each platform would be difficult unless
the developer has the necessary skill sets, for example, an
application developed for one platform does not easily
translate to another platform, see Fig. 2.

A native application has the benefit of accessing the
device’s APIs and frameworks, making the best use of the
device’s features. This requires a developer’s specialization
with the device’s hardware and software stack to get the most
out of the device. This makes native more expensive to build
for each platform.

By abstracting the details on how to interact with the

device, a developer may not need this level of detailed
knowledge of the device. Although abstracting out the detail
may restrict the capabilities of the application.

Mobile OS Type Skill Set Required
Apple iOS Objective-C
Google Android Java
RIM BlackBerry Java
Symbian C, C++, Python, HTML/CSS/JS
Windows Mobile, 7 Phone .NET
HP Palm webOS HTML/CSS/JS
MeeGo C, C++, HTML/CSS/JS
Samsung bada C++
Fig. 2. Required skill sets for mobile OS [2].

There are alternatives to developing native applications.
These alternatives attempt to abstract commonalities between
the devices at different layers. For example, all smartphones
have a web browser [2]. A mobile web application may be an
alternative. Another alternative is a hybrid approach which
uses a framework to embed the device’s browser in the
application and provides application programming interfaces
(APIs) to allow web code to interact with the device hardware.
There are several approaches for developing mobile
applications, each with its benefits and disadvantages as well
as levels of software engineering reuse.

Mobile web applications, especially those leveraging the
features of HTML5, have potential to resolve the issues
writing native applications. For example, mobile web benefits
for a large install base, good distribution, and is developer
supported (most developers know HTML and JavaScript) [3].
Another benefit is the mobile web application does not have to
give up a percentage of its fee back to the app store it is
housed in, such as the 30% Apple App Store fee [5]. HTML5
APIs include the ability to interact with the application in
online and offline mode, developers can persist the data on the
client using SQL, and APIs for audio, video, and limited
device sensors, such as GPS.

Mobile web sounds like an ideal solution, but has
downsides. There is limited support for non-location device
sensors. Content capture by camera and microphone is
limited. The interruption of the user is limited to alerts and the
application can not execute as a background task and provide
notifications other than audio.

Another option attempts to combine the benefits of both
native code and web development. It is considered a hybrid
and provides a cross platform development framework that
turns the mobile application into an embedded browser and
provides APIs for JavaScript. The application is then
developed using HTML5, CSS, and JavaScript. Frameworks
available to do this are RhoMobile’s Rhodes, MoSync, and the

Selecting a Mobile Platform Strategy
Robert S. Bauer

 2

open source solution, PhoneGap. These APIs allow
JavaScript access to the devices features and sensors and
attempts to mimic the device’s user interface look and feel.
As stated by J. Dehlinger and J. Dixon, “HTML5 tools, like
PhoneGap, try to create a near native application for multiple
platforms, but this does not allow for rich features that have
access to the device’s APIs and is a technological solution
rather than a software engineering solution that allows reuse of
engineering assets.”

This research evaluates the alternatives to native application
development and the software engineering issues.

II. RESULTS
Anthony Wasserman surveyed mobile developers to get an

understanding of their engineering practices and found the
following [6]:

• Most apps were small
• One to two developers working on the same app
• Sharp divide between native and web
• Developers adhere to best practices but rarely use

formal development processes
• Developers rarely track their effort or took metrics

Developers are following software engineering best

practices for mobile development, but J. Dehlinger and J.
Dixon suggest more could be done regarding mobile software
engineering. They suggest mobile should have hierarchical
structures consisting of the following [7]:

• Business layer
• Software development kit layer (SDK)
• Hardware-dependent layer (HdS)
• Hardware layer (execution platform)
Each layer would be positioned above the next in the

mentioned order. For mobile, each layer is variable and
changes. The current state of mobile development “is still
monolithic” [7]. The authors state an “actual hierarchy” in the
development process is necessary for mobile development.

By doing so, this would allow for two categories of mobile
designers. One would be a software platform provider, which
would implement services provided by the hardware and SDK.
The software platform provider would also provide
abstractions needed for the application developers to use.
PhoneGap and Rhodes assume the application developer has
strong programming skills and instead, this activity should be
taken care of by the software platform provider.

The second mobile designer would be the application
developer. Their roll would be to implement the user interface
and user experience with a focus on the business and end user
logic. They shouldn’t have to worry about cross device
compatibility. They would be dependant on the APIs
developed and provided by the software platform provider.

By splitting the development rolls, software engineering
experience and skill can be directed. The experienced mobile
developer can abstract the hardware and SDK for the
application developer to work with. The process of doing so

abstracts and modularizes mobile development.
 At this time, this approach has some challenges. The
appropriate abstractions for each development layer needs to
be defined. “Synthesis processes capable of transforming the
semantics of the end-user application into cost-effective
runtime code while taking account the non-functional
requirements of the application and of the execution platform”
need to be defined. Support needs to be added for application
testing and fault-tolerance, as well as handling unidentified
faults in the platform. Be able to leverage hardware-related
issues, such as the availability of multi-core devices and
distributed computing environments. Lastly, support for
system evolution for the execution platform, requirements, and
programming languages.
 A development hierarchy for mobile development would be
ideal. In its place, there are cross platform frameworks
available, although as mentioned, these are a technical
solution instead of a software engineering solution.
Developing a mobile website is feasible too, although it has its
limitations and may not be an ideal solution depending on the
application’s requirements.
 If a native approach is still desired and multiple platforms
need to be supported, a mobile application software product
line should be considered. The product line would be a set of
applications that share the same core requirements, yet are
different according to a set of variable requirements [4]. This
approach can reduce software engineering time and cost. A
domain engineering phase would define the requirements for
both the common and variable aspects of the entire product
line. The application engineering phase would reuse these to
develop the specific applications within the product line. By
forcing developers to think about the common requirements,
design, and resources, this would benefit mobile development.
The author has participated in an Android and iOS
development project which used and benefited from this
technique.

III. CONCLUSION
Which platform to develop for? There are some options

and the final decision would have to be based on the
application’s needs, features, and capabilities.
 Develop for a single platform and use a subset of
features. For example, develop for the iPhone, iPad, and
iPod, but use only the features available to all of these
devices.
 Develop native applications for each platform. The trade-
off is higher development and maintenance. But in return,
the application is optimized for performance and
functionality.
 Develop mobile web application to develop once and use
across multiple platforms and devices. It is uncertain if
mobile web applications will meet the needs of the market
[6]. It is critical to identify device sensors to be
incorporated into the application and determine if HTML5
APIs are support in the device browsers.

 3

 Develop using one or more layered abstractions (hybrid)
that can map a write-once application to a native application
that runs on multiple platforms. This solution may be the
best fit for those looking to support multiple platforms and
devices.

REFERENCES
[1] comScore. (2012, April 7) “comScore Reports February 2012 U.S.

Mobile Subscriber Market Share,” [Online]. Available:
http://www.comscore.com/Press_Events/Press_Releases/2012/4/comSco
re_Reports_February_2012_U.S._Mobile_Subscriber_Market_Share

[2] Andre Charland and Brian Leroux. “Mobile application development:
web vs. native.” Commun. ACM 54, 5 (May 2011), 49-53.
DOI=10.1145/1941487.1941504 [Online]. Available:
http://doi.acm.org/10.1145/1941487.1941504

[3] T. Melamed, B. Clayton, “A Comparative Evaluation of HTML5 as a
Pervasive Media Platform,” Springer Berlin Heidelberg, 2010, pp. 307-
325

[4] J. Dehlinger, J. Dixon, “Mobile Application Software Engineering:
Challenges and Research Directions.” Workshop Papers. (October
2011). [Online]. Available: http://www.mobileseworkshop.org/papers/7-
Dehlinger_Dixon.pdf

[5] K. Jordan, “Is HTML5 the Solution to App Store Fees?” Editor & Publisher.
N.p.,. 2011. [Online]. Available:
http://www.editorandpublisher.com/Features/Article/Is-HTML5-the-
Solution-to-App-Store-Fees-

[6] A. Wasserman. “Software Engineering Issues for Mobile Application
Development.” Workshop Papers. 2011. [Online]. Available:
http://www.mobileseworkshop.org/papers/Wasserman_foser2010.pdf

[7] J. Dehlinger, J. Dixon, “XModel: an Unified Effort Towards the
Development of High-Quality Mobile Applications.” Workshop Papers.
(October 2011). [Online]. Available:
http://www.mobileseworkshop.org/papers/8-Cota_etal_UFRGS.pdf

http://www.comscore.com/Press_Events/Press_Releases/2012/4/comScore_Reports_February_2012_U.S._Mobile_Subscriber_Market_Share�
http://www.comscore.com/Press_Events/Press_Releases/2012/4/comScore_Reports_February_2012_U.S._Mobile_Subscriber_Market_Share�
http://doi.acm.org/10.1145/1941487.1941504�
http://www.mobileseworkshop.org/papers/7-Dehlinger_Dixon.pdf�
http://www.mobileseworkshop.org/papers/7-Dehlinger_Dixon.pdf�
http://www.editorandpublisher.com/Features/Article/Is-HTML5-the-Solution-to-App-Store-Fees-�
http://www.editorandpublisher.com/Features/Article/Is-HTML5-the-Solution-to-App-Store-Fees-�
http://www.mobileseworkshop.org/papers/Wasserman_foser2010.pdf�
http://www.mobileseworkshop.org/papers/8-Cota_etal_UFRGS.pdf�

	I. INTRODUCTION
	II. Results
	III. Conclusion

