
1

General Trees
Chapter 7

Well, “non-binary” trees anyway.

General Trees

� General trees are similar to binary trees, except
that there is no restriction on the number of
children that any node may have.

More formally…
•A tree, T,

• is a finite set of one or more nodes
• such that there is one designated node r called the
root of T,
• and the remaining nodes in (T - {r}) are
partitioned into n ≥ 0 disjoint subsets T1, T2, …, Tk,
• each of which is a tree,
• and whose roots r1, r2, …, rk, respectively, are
children of r.

General Trees

� One way to implement a a general tree is to use
the same node structure that is used for a link-
based binary tree. Specifically, given a node n,
� n’s left pointer points to its left-most child (like a binary

tree) and,
� n’s right pointer points to a linked list of nodes that are

siblings of n (unlike a binary tree).

R

P

V

S1 S2

C1
C2

Children of V

Subtree rooted at V

Root

Parent of V
Ancestors of V

Siblings of V

N-ary Trees
� An n-ary tree is a generalization of a binary tree,

where each node can have no more than n
children.

� Since the maximum number of children for any
node is known, each parent node can point directly
to each of its children -- rather than requiring a
linked list.

2

N-ary Trees
� This results in a faster search time (if you know

which child you want).

� The disadvantage of this approach is that extra
space reserved in each node for n child pointers,
many of which may not be used.

N-ary Trees: Example
A

HF GE I

B C D
An n-ary tree
with n = 3

Pointer-based implementation of the n-ary tree

A

B

E F G H I

C D

General Trees: Example

Pointer-based implementation of the general tree

B

A

E F G H I

DC

A

HF GE I

B C D

A general tree

General Trees:
Example (Cont’d.)

B

A

E F G H I

DC

A

F

G

E

H

B

C

D

I

Binary tree with
the pointer structure
of the preceding
general tree

Tree ADT (Java)
� We use positions to

abstract nodes
� Generic methods:

� integer size()
� boolean isEmpty()
� Iterator elements()
� Iterator positions()

� Accessor methods:
� position root()
� position parent(p)
� positionIterator

children(p)

� Query methods:
� boolean isInternal(p)
� boolean isExternal(p)
� boolean isRoot(p)

� Update method:
� object replace (p, o)

� Additional update methods
may be defined by data
structures implementing
the Tree ADT

C++ ADT
Class GTNode {
public:

GTNode (const ELEM); // constructor
~GTNode(); // destructor
ELEM value(); // return node’s value
bool isLeaf(); // TRUE if is a leaf
GTNode* parent(); // return parent
GTNode* leftmost_child(); // return first child
GTNode* rightmost_sibling(); // return right sibling
void setValue(ELEM); // set node’s value
void insert_first(GTNode* n); // insert first child
void insert_next(GTNode* n); // insert right sibling
void remove_first(); // remove first child
void remove_next(); // remove right sibling

};

3

C++ ADT

Class GenTree {
public:

Gentree(); // constructor
~Gentree(); // destructor
void clear(); // free nodes
GTNode* root(); // return root
void newroot(ELEM, GTNode*, GTNode*); // combine

};

A

B C D E

F G H I J K L

M N O

P

Preorder Traversal:
1) process root
2) recursively process children

from left to right

General Tree Traversal

Algorithm Print (GTNode rt) // preorder traversal from root
Input: a general tree node
Output: none – information printed to screen

GTNode temp
if (rt is a leaf)

output “Leaf: “
else

output “Internal: “
output value stored in node
temp = leftmost_child of rt
while (temp is not NULL)

Print (temp) // note recursive call
temp = right_sibling of temp

A

B C D E

F G H I J K L

M N O

P

Preorder Traversal:
1) process root
2) recursively process children

from left to right

A B F G M P N O H C I D E J K L

A

B C D E

F G H I J K L

M N O

P

Postorder Traversal:
1) no node is processed until all of

its children have been processed,
recursively, left to right

2) process root

F P M N O G H B I C D J K L E A

A

B C D E

F G H I J K L

M N O

P

Inorder Traversal:

by definition, none

4

Parent Pointer Implementation

R

A B

C D E

W

X Y Z

F

R A B C D E F W X Y Z
0 0 1 1 1 2 7 7 7

0 1 2 3 4 5 6 7 8 9 10

Parent’s Index
Label

Node Index

Implementations

Common ones, plus make up your own!

Lists of children Leftmost Child/Right Sibling

Leftmost Child/Right Sibling Linked Implementations

5

Linked Implementations
Converting to a Binary Tree

Left child/right sibling representation essentially
stores a binary tree.

Use this process to convert any general tree to a
binary tree.

A forest is a collection of one or more general
trees.

Sequential Implementations

List node values in the order they would be
visited by a preorder traversal.

Saves space, but allows only sequential
access.

Need to retain tree structure for
reconstruction.

A

B C

D E F

G H I

A
B
D
C
E
G
F
H
I

A
B
/
D
/
/
C
E
G
/
/
/
F
H
/
/
I
/
/

Sequential Implementations

Example: For binary trees, us a symbol to
mark null links.

AB/D//CEG///FH//I//

space efficient, but not time efficient

Which node was the right child of the root?

A

B C

D E F

G H I

6

Sequential Implementations

Example: Mark nodes as leaf or internal.

A’B’/DC’E’G/F’HI

no need for null pointers when both children are null

A

B C

D E F

G H I

What about general trees?
� Not only must the general tree

implementation indicate whether a node is a
leaf or internal node, it must also indicate how
many children the node has.

What about general trees?
� Alternatively, the implementation can indicate when a node’s

child list has come to an end.

� Include a special mark to indicate the end of a child list.

� All leaf nodes are followed by a “)” symbol since they have
no children.

� A leaf node that is also the last child for its parent would
indicate this by two or more successive “)” symbols.

Sequential Implementations

Example: For general trees, mark the end of
each subtree.

RAC)D)E))BF)))

